Main Idea, Details, Opinions, and Arguments in Narrative Science Passages
Help Questions
SSAT Upper Level Reading › Main Idea, Details, Opinions, and Arguments in Narrative Science Passages
Adapted from Rambles in the Mammoth Cave, during the Year 1844 by Alexander Clark Bullitt (1845)
Pensico Avenue averages about fifty feet in width with a height of about thirty feet, and is said to be two miles long. It unites in an eminent degree the truly beautiful with the sublime, and is highly interesting throughout its entire extent. For a quarter of a mile from the entrance, the roof is beautifully arched, about twelve feet high and sixty wide, and formerly was encrusted with rosettes and other formations, nearly all of which have been taken away or demolished, leaving this section of the Cave quite denuded. The walking here is excellent; a dozen persons might run abreast for a quarter of a mile to Bunyan's Way, a branch of the avenue leading on to the river. At this point the avenue changes its features of beauty and regularity, for those of wild grandeur and sublimity, which it preserves to the end. The way, no longer smooth and level, is frequently interrupted and turned aside by huge rocks, which lie tumbled around in all imaginable disorder. The roof now becomes very lofty and imposingly magnificent; its long, pointed, or lancet arches, forcibly reminding you of the rich and gorgeous ceilings of the old Gothic cathedrals, at the same time solemnly impressing you with the conviction that this is a "building not made with hands." No one, not dead to all the more refined sensibilities of our nature, but must exclaim, in beholding the sublime scenes which here present themselves, this is not the work of man! No one can be here without being reminded of the all pervading presence of the great "Father of all."
"What, but God, pervades, adjusts and agitates the whole!"
Not far from the point at which the avenue assumes the rugged features, which now characterize it, we separated from our guide, he continuing his straight-forward course, and we descending gradually a few feet and entering a tunnel of fifteen feet wide on our left, the ceiling twelve or fourteen feet high, perfectly arched and beautifully covered with white incrustations, very soon reached the Great Crossings. Here the guide jumped down some six or eight feet from the avenue which we had left, into the tunnel where we were standing, and crossing it, climbed up into the avenue, which he pursued for a short distance or until it united with the tunnel, where he again joined us. In separating from, then crossing, and again uniting with the avenue, it describes with it something like the figure 8. The name, “Great Crossings,” is not unapt. It was however, not given, as our intelligent guide veritably assured us, in honor of the Great Crossings where the man lives who killed Tecumseh, but because two great caves cross here; and moreover said he, "the valiant Colonel ought to change the name of his place, as no two places in a state should bear the same name, and this being the great place ought to have the preference."
Not very far from this point, we ascended a hill on our left, and walking a short distance over our shoe-tops in dry nitrous earth in a direction somewhat at a right angle with the avenue below, we arrived at the Pine Apple Bush, a large column composed of a white, soft, crumbling material, with bifurcations extending from the floor to the ceiling. At a short distance, either to the right or left, you have a fine view of the avenue some twenty feet below, both up and down. Why this crumbling stalactite is called the Pine Apple Bush, I cannot divine. It stands however in a charming, secluded spot, inviting to repose; and we luxuriated in inhaling the all-inspiring air, while reclining on the clean, soft, and dry saltpeter earth.
Based on the passage, the primary reason the guide wants the Colonel to change the name of his “Great Crossings” is __________.
He believes that there should not be duplicate place names in states.
He thinks the cave system is a greater place than the place where Tecumseh was killed.
He thinks it is an insult to the cave system.
He thinks the name is more suited to the cave system.
He thinks the Colonel's reason for naming his place is erroneous.
Explanation
The author states that the guide's main reason for wanting the Colonel to change the name of his “Great Crossings” is the belief that “no two places in a State should bear the same name.” The belief that the cave system is the greater of the two places being a secondary reason: “and this being the great place ought to have the preference.”
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
Which of the following would be a direct consequence of belief in geocentrism?
That the earth does not move
That all bodies in space have independent orbits
That even the stars in space move
That the sun is stationary
That the universe is finite in size
Explanation
The theory of geocentrism held that the earth was the center of the solar system (indeed of all things) and that it was fixed in its location. This means that the earth presumably did not move at all. It was "a fixed point in reference to the rest of the visible bodies." They all rotated around it.
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
A stoat might also be called __________.
an ermine, depending on its fur color
a weasel, depending on where it lives
a weasel, depending on its fur color
an ermine, depending on where it lives
a weasel, depending on what it eats
Explanation
The passage’s last paragraph provides the information we need to answer this question. The paragraph begins by describing “the common stoat.” Eventually, it says, “But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine.” While this sentence is followed by “A similar example is afforded by the weasel,” this means that the weasel is another example of an animal that changes its fur color, not that a stoat can be called a weasel. It means that a weasel is a distinct type of animal. The correct answer is that a stoat might also be called “an ermine, depending on its fur color.”
Adapted from The Evolutionist at Large by Grant Allen (1881)
I am engaged in watching a brigade of ants out on foraging duty, and intent on securing for the nest three whole segments of a deceased earthworm. They look for all the world like those busy companies one sees in the Egyptian wall paintings, dragging home a huge granite colossus by sheer force of bone and sinew. Every muscle in their tiny bodies is strained to the utmost as they pry themselves laboriously against the great boulders that strew the path, and that are known to our Brobdingnagian intelligence as grains of sand. Besides the workers themselves, a whole battalion of stragglers runs to and fro upon the broad line that leads to the headquarters of the community. The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen. I often wish that I could for a while get inside those tiny brains, and see, or rather smell, the world as ants do. For there can be little doubt that to these brave little carnivores here the universe is chiefly known as a collective bundle of odors, simultaneous or consecutive. As our world is mainly a world of visible objects, theirs, I believe, is mainly a world of olfactible things.
In the head of every one of these little creatures is something that we may fairly call a brain. Of course most insects have no real brains; the nerve-substance in their heads is a mere collection of ill-arranged ganglia, directly connected with their organs of sense. Whatever man may be, an earwig at least is a conscious, or rather a semi-conscious, automaton. He has just a few knots of nerve cells in his little pate, each of which leads straight from his dim eye or his vague ear or his indefinite organs of taste; and his muscles obey the promptings of external sensations without possibility of hesitation or consideration, as mechanically as the valve of a steam engine obeys the governor balls. The poor soul's intellect is wholly deficient, and the senses alone make up all that there is of him, subjectively considered. But it is not so with the highest insects. They have something that truly answers to the real brain of men, apes, and dogs, to the cerebral hemispheres and the cerebellum that are superadded in us mammals upon the simple sense-centers of lower creatures. Besides the eye, with its optic nerve and optic perceptive organs—besides the ear, with its similar mechanism—we mammalian lords of creation have a higher and more genuine brain, that collects and compares the information given to the senses, and sends down the appropriate messages to the muscles accordingly. Now, bees and flies and ants have got much the same sort of arrangement, on a smaller scale, within their tiny heads. On top of the little knots that do duty as nerve centers for their eyes and mouths, stand two stalked bits of nervous matter, whose duty is analogous to that of our own brains. And that is why these three sorts of insects think and reason so much more intellectually than beetles or butterflies, and why the larger part of them have organized their domestic arrangements on such an excellent cooperative plan.
We know well enough what forms the main material of thought with bees and flies, and that is visible objects. For you must think about something if you think at all; and you can hardly imagine a contemplative blow-fly setting itself down to reflect, like a Hindu devotee, on the syllable Om, or on the oneness of existence. Abstract ideas are not likely to play a large part in apian consciousness. A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us. The information that it gets through its eye, coupled with other ideas derived from touch, smell, and taste, no doubt makes up the main thinkable and knowable universe as it reveals itself to the apian intelligence. To ourselves and to bees alike the world is, on the whole, a colored picture, with the notions of distance and solidity thrown in by touch and muscular effort; but sight undoubtedly plays the first part in forming our total conception of things generally.
The third paragraph establishes all of the following EXCEPT __________.
Lubbock has proved nothing
bees, like us can sense colour, distance, and solidness
bees can see color
bees do not entertain abstract ideas
bees rely on visible objects
Explanation
According to the third paragraph, Lubbock has given us proof that bees can see colour and shapes through his experiments: “A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us.” The experiments have shown this, therefore there is proof, which makes the statement that he has proved nothing false.
Adapted from Rambles in the Mammoth Cave, during the Year 1844 by Alexander Clark Bullitt (1845)
Pensico Avenue averages about fifty feet in width with a height of about thirty feet, and is said to be two miles long. It unites in an eminent degree the truly beautiful with the sublime, and is highly interesting throughout its entire extent. For a quarter of a mile from the entrance, the roof is beautifully arched, about twelve feet high and sixty wide, and formerly was encrusted with rosettes and other formations, nearly all of which have been taken away or demolished, leaving this section of the Cave quite denuded. The walking here is excellent; a dozen persons might run abreast for a quarter of a mile to Bunyan's Way, a branch of the avenue leading on to the river. At this point the avenue changes its features of beauty and regularity, for those of wild grandeur and sublimity, which it preserves to the end. The way, no longer smooth and level, is frequently interrupted and turned aside by huge rocks, which lie tumbled around in all imaginable disorder. The roof now becomes very lofty and imposingly magnificent; its long, pointed, or lancet arches, forcibly reminding you of the rich and gorgeous ceilings of the old Gothic cathedrals, at the same time solemnly impressing you with the conviction that this is a "building not made with hands." No one, not dead to all the more refined sensibilities of our nature, but must exclaim, in beholding the sublime scenes which here present themselves, this is not the work of man! No one can be here without being reminded of the all pervading presence of the great "Father of all."
"What, but God, pervades, adjusts and agitates the whole!"
Not far from the point at which the avenue assumes the rugged features, which now characterize it, we separated from our guide, he continuing his straight-forward course, and we descending gradually a few feet and entering a tunnel of fifteen feet wide on our left, the ceiling twelve or fourteen feet high, perfectly arched and beautifully covered with white incrustations, very soon reached the Great Crossings. Here the guide jumped down some six or eight feet from the avenue which we had left, into the tunnel where we were standing, and crossing it, climbed up into the avenue, which he pursued for a short distance or until it united with the tunnel, where he again joined us. In separating from, then crossing, and again uniting with the avenue, it describes with it something like the figure 8. The name, “Great Crossings,” is not unapt. It was however, not given, as our intelligent guide veritably assured us, in honor of the Great Crossings where the man lives who killed Tecumseh, but because two great caves cross here; and moreover said he, "the valiant Colonel ought to change the name of his place, as no two places in a state should bear the same name, and this being the great place ought to have the preference."
Not very far from this point, we ascended a hill on our left, and walking a short distance over our shoe-tops in dry nitrous earth in a direction somewhat at a right angle with the avenue below, we arrived at the Pine Apple Bush, a large column composed of a white, soft, crumbling material, with bifurcations extending from the floor to the ceiling. At a short distance, either to the right or left, you have a fine view of the avenue some twenty feet below, both up and down. Why this crumbling stalactite is called the Pine Apple Bush, I cannot divine. It stands however in a charming, secluded spot, inviting to repose; and we luxuriated in inhaling the all-inspiring air, while reclining on the clean, soft, and dry saltpeter earth.
Based on the passage, the primary reason the guide wants the Colonel to change the name of his “Great Crossings” is __________.
He believes that there should not be duplicate place names in states.
He thinks the cave system is a greater place than the place where Tecumseh was killed.
He thinks it is an insult to the cave system.
He thinks the name is more suited to the cave system.
He thinks the Colonel's reason for naming his place is erroneous.
Explanation
The author states that the guide's main reason for wanting the Colonel to change the name of his “Great Crossings” is the belief that “no two places in a State should bear the same name.” The belief that the cave system is the greater of the two places being a secondary reason: “and this being the great place ought to have the preference.”
Adapted from The Evolutionist at Large by Grant Allen (1881)
I am engaged in watching a brigade of ants out on foraging duty, and intent on securing for the nest three whole segments of a deceased earthworm. They look for all the world like those busy companies one sees in the Egyptian wall paintings, dragging home a huge granite colossus by sheer force of bone and sinew. Every muscle in their tiny bodies is strained to the utmost as they pry themselves laboriously against the great boulders that strew the path, and that are known to our Brobdingnagian intelligence as grains of sand. Besides the workers themselves, a whole battalion of stragglers runs to and fro upon the broad line that leads to the headquarters of the community. The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen. I often wish that I could for a while get inside those tiny brains, and see, or rather smell, the world as ants do. For there can be little doubt that to these brave little carnivores here the universe is chiefly known as a collective bundle of odors, simultaneous or consecutive. As our world is mainly a world of visible objects, theirs, I believe, is mainly a world of olfactible things.
In the head of every one of these little creatures is something that we may fairly call a brain. Of course most insects have no real brains; the nerve-substance in their heads is a mere collection of ill-arranged ganglia, directly connected with their organs of sense. Whatever man may be, an earwig at least is a conscious, or rather a semi-conscious, automaton. He has just a few knots of nerve cells in his little pate, each of which leads straight from his dim eye or his vague ear or his indefinite organs of taste; and his muscles obey the promptings of external sensations without possibility of hesitation or consideration, as mechanically as the valve of a steam engine obeys the governor balls. The poor soul's intellect is wholly deficient, and the senses alone make up all that there is of him, subjectively considered. But it is not so with the highest insects. They have something that truly answers to the real brain of men, apes, and dogs, to the cerebral hemispheres and the cerebellum that are superadded in us mammals upon the simple sense-centers of lower creatures. Besides the eye, with its optic nerve and optic perceptive organs—besides the ear, with its similar mechanism—we mammalian lords of creation have a higher and more genuine brain, that collects and compares the information given to the senses, and sends down the appropriate messages to the muscles accordingly. Now, bees and flies and ants have got much the same sort of arrangement, on a smaller scale, within their tiny heads. On top of the little knots that do duty as nerve centers for their eyes and mouths, stand two stalked bits of nervous matter, whose duty is analogous to that of our own brains. And that is why these three sorts of insects think and reason so much more intellectually than beetles or butterflies, and why the larger part of them have organized their domestic arrangements on such an excellent cooperative plan.
We know well enough what forms the main material of thought with bees and flies, and that is visible objects. For you must think about something if you think at all; and you can hardly imagine a contemplative blow-fly setting itself down to reflect, like a Hindu devotee, on the syllable Om, or on the oneness of existence. Abstract ideas are not likely to play a large part in apian consciousness. A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us. The information that it gets through its eye, coupled with other ideas derived from touch, smell, and taste, no doubt makes up the main thinkable and knowable universe as it reveals itself to the apian intelligence. To ourselves and to bees alike the world is, on the whole, a colored picture, with the notions of distance and solidity thrown in by touch and muscular effort; but sight undoubtedly plays the first part in forming our total conception of things generally.
The third paragraph establishes all of the following EXCEPT __________.
Lubbock has proved nothing
bees, like us can sense colour, distance, and solidness
bees can see color
bees do not entertain abstract ideas
bees rely on visible objects
Explanation
According to the third paragraph, Lubbock has given us proof that bees can see colour and shapes through his experiments: “A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us.” The experiments have shown this, therefore there is proof, which makes the statement that he has proved nothing false.
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
A stoat might also be called __________.
an ermine, depending on its fur color
a weasel, depending on where it lives
a weasel, depending on its fur color
an ermine, depending on where it lives
a weasel, depending on what it eats
Explanation
The passage’s last paragraph provides the information we need to answer this question. The paragraph begins by describing “the common stoat.” Eventually, it says, “But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine.” While this sentence is followed by “A similar example is afforded by the weasel,” this means that the weasel is another example of an animal that changes its fur color, not that a stoat can be called a weasel. It means that a weasel is a distinct type of animal. The correct answer is that a stoat might also be called “an ermine, depending on its fur color.”
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
Which of the following would be a direct consequence of belief in geocentrism?
That the earth does not move
That all bodies in space have independent orbits
That even the stars in space move
That the sun is stationary
That the universe is finite in size
Explanation
The theory of geocentrism held that the earth was the center of the solar system (indeed of all things) and that it was fixed in its location. This means that the earth presumably did not move at all. It was "a fixed point in reference to the rest of the visible bodies." They all rotated around it.
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
How does the quotation from Mr. Gosse relate to the evidence provided by other scientists earlier in the passage?
It supports the same conclusions that the previous evidence supports.
It contradicts the previous evidence and supports a different hypothesis.
It has nothing to do with the previous evidence.
It suggests that some of the previous evidence may be true, but some may be false.
It suggests that the earlier evidence applies not only to hummingbirds but to another type of bird as well.
Explanation
Let’s consider what Mr. Gosse is saying. The passage says, “Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.’” Paraphrasing that, Mr. Gosse is saying that he has seen hummingbirds contort themselves in the air and he’s pretty sure they’re doing this in order to catch insects. The evidence provided by scientists earlier in the passage supports the idea that hummingbirds eat insects, just like Mr. Gosse’s does. We can’t say that Gosse’s evidence contradicts the earlier evidence, suggests that some of it may be false, or has nothing to do with the previous evidence. It also doesn’t suggest that the previous evidence can be applied to birds other than hummingbirds, because Mr. Gosse says that he is only discussing hummingbirds and we are to infer that the Polytmus is a hummingbird. So, the correct answer is that “it supports the same conclusions that the previous evidence supports.”
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
How does the quotation from Mr. Gosse relate to the evidence provided by other scientists earlier in the passage?
It supports the same conclusions that the previous evidence supports.
It contradicts the previous evidence and supports a different hypothesis.
It has nothing to do with the previous evidence.
It suggests that some of the previous evidence may be true, but some may be false.
It suggests that the earlier evidence applies not only to hummingbirds but to another type of bird as well.
Explanation
Let’s consider what Mr. Gosse is saying. The passage says, “Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.’” Paraphrasing that, Mr. Gosse is saying that he has seen hummingbirds contort themselves in the air and he’s pretty sure they’re doing this in order to catch insects. The evidence provided by scientists earlier in the passage supports the idea that hummingbirds eat insects, just like Mr. Gosse’s does. We can’t say that Gosse’s evidence contradicts the earlier evidence, suggests that some of it may be false, or has nothing to do with the previous evidence. It also doesn’t suggest that the previous evidence can be applied to birds other than hummingbirds, because Mr. Gosse says that he is only discussing hummingbirds and we are to infer that the Polytmus is a hummingbird. So, the correct answer is that “it supports the same conclusions that the previous evidence supports.”